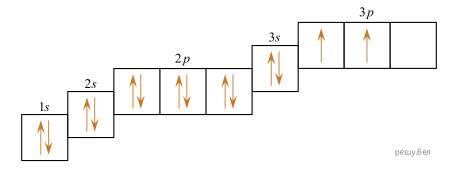
Централизованное тестирование по химии, 2021

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.


В заданиях, где нужно установить соответствие между двумя столбцами, ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1В4Г2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Число элементов-металлов, расположенных в группе IIIА периодической системы, равно:

1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

2. Дана электронно-графическая схема атома химического элемента:

Число протонов в ядре атома этого элемента равно:

1) 31; 2

2) 28;

3) 15;

4) 14; 5) 9.

3. Согласно положению в периодической системе в порядке усиления основных свойств высших оксидов элементы расположены в ряду:

1) Na, Mg, Al;

2) Al, B, Ca;

3) B, Be, Na;

4) Li, Ba, Mg;

5) Be, Al, Si.

4. Как ковалентная полярная, так и ионная связь присутствует в веществе:

1) CH₂OH;

2) NH₄Cl;

3) H_2SO_4 ;

4) MgCl₂;

5) CaO.

5. Низшая степень окисления одинакова у всех элементов ряда:

1) C, Si, S;

2) Mg, Ca, F;

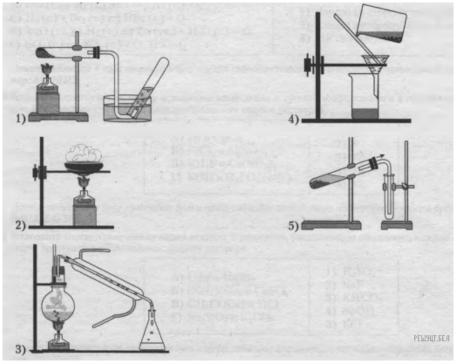
3) F, N, Br;

4) N, P, A1;

5) 5.

5) H. Cl. Br.

6. Число веществ из предложенных — бор, моноклинная сера, алмаз, гашеная известь, медь, имеющих молекулярное строение (н. у.), равно:


1) 1;

2) 2;

3) 3;

4) 4;

7. В водный раствор питьевой соды попала мраморная крошка. Удалить мрамор из смеси можно в соответствии со схемой, указанной на рисунке:

- 1) 1; 2) 2; 3) 3; 4) 4;
- **8.** Количество (моль) азотной кислоты, содержащей $3.54 \cdot 10^{24}$ атомов, равно:
 - 1) 1,18;
- 2) 1,60;
- 3) 1,92;
- 4) 2,41;
- 5) 2,80.

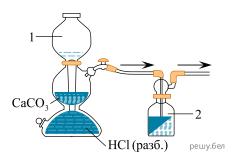
9. Согласно классификации оксидов несолеобразующий оксид является продуктом химического превращения:

1) SiC+O₂(изб.)—
$$\overset{t}{\longrightarrow}$$
; 2) Cu+HNO₃ (разб.)— $\overset{\cdot}{\longrightarrow}$; 3) NH₄Br+KOH— $\overset{\cdot}{\longrightarrow}$; 4) ZnCO₃— $\overset{t}{\longrightarrow}$; 5) H₂S+O₂(изб.)— $\overset{t}{\longrightarrow}$.

- 10. Число бескислородных кислот из приведенных иодоводородная, фосфорная, соляная, сероводородная, бромоводородная, которые можно получить растворением газообразного (н. у.) вещества в воде, равно:
 - 1) 1; 2) 2; 3) 3; 4) 4;

- 5) 5.

11. К раствору гидроксида калия объемом 1 дм^3 с молярной концентрацией щелочи 0.02 моль/ дм^3 добавили фенолфталеин. Окрашенный в результате этого раствор обесцветится при добавлении к нему:


- 1) 0,01 моль KHCO₃; 2) 0,01 моль CaBr₂;
- 3) 0,03 моль НІ
- 4) 0,005 моль $Zn(OH)_2$;
- 5) 0,015 моль NH₃.

12. В сосуд, содержащий 2 дм³ воды, добавили 1 моль CuSO₄ и 1 моль KOH. В результате выпал осадок. Масса осадка уменьшится, если в этот сосуд добавить:

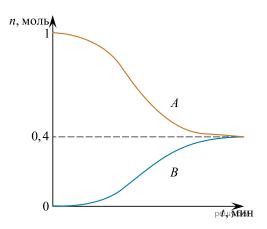
- 1) 1 моль K_2CO_3 ; 2) 1 моль $Ba(NO_3)_2$; 3) 1 моль K_2SO_4 ; 4) 1 моль H_2SO_4 ;

- 5) 1 моль NaOH.

13. Для осушки газа, полученного в установке 1, его целесообразно пропустить через сосуд 2 с концентрированным раствором вещества:

- 1) KOH;

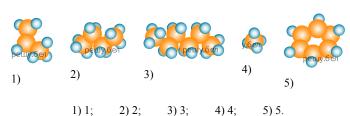
- 2) NH₃; 3) H₂SO₄; 4) KNO₃;
- 5) Na₂CO₃.

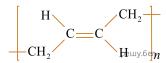

14. Веществами X и Y в схеме превращений

$$H_2SO_4(pas6.) \xrightarrow{X} K_2SO_4 \xrightarrow{Y} KCl$$

являются соответственно:

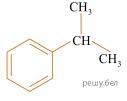
- 1) K₂CO₃ и BaCl₂;
- 2) K₂S и NH₄Cl; 3) KI и BaCl₂;
- 4) K₂S и NaCl;
- 5) KHSO₄ и HCl.
- 15. Удалить накипь со стенок отопительного котла можно, если в котел с чистой водой:
 - 1) добавить питьевую соду; 4) пропустить кислород;
- 2) добавить уксусную кислоту;
 - 3) добавить гашеную известь; 5) пропустить аммиак.
- 16. Медную стружку нагрели на воздухе до потемнения, а затем охладили и опустили в сосуд, содержащий разбавленную серную кислоту в избытке. Укажите тип реакции, протекающей в сосуде:
- 2) соединения;
- 3) окислительно-восстановительная;
- 4) замещения;
- 5) разложения.


17. На графике представлена зависимость количеств исходного вещества (А) и продукта (В) от времени протекания некоторой реакции. В уравнении этой реакции коэффициент перед формулой А равен 9. Определите коэффициент перед формулой В:


- 1) 8;
 - 2) 7;
- 3) 6;
- 4) 4; 5) 5.
- 18. Количество (моль) ионов, образующихся при полной диссоциации в воде вещества количеством 4 моль, формула которого $(NH_4)_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$ равно:
 - 1) 16;
- 2) 24;
- 3) 28;
- 4) 32;
- 19. К получению раствора с рН 11 может привести растворение в воде вещества, формула которого:
- 2) FeCl₂;
- 3) H_2SO_4 ;
- 4) CH₂OH;
- 20. Окислительно-восстановительная реакция возможна между оксидами пары:
 - 1) ZnO и P₂O₅;
- 2) Al₂O₃ и Cl₂O₇;
- 3) PbO₂ и CO;
- 4) Fe₂O₃ и CO₂;

5) 48.

- 5) K₂O и BeO.
- 21. Исходное октановое число бензина, равное 100, можно увеличить добавлением:
 - 1) гексана;
- 2) 1,2,4-триметилбензола;
- 3) 2,2,4-триметилпентана;
- 4) гептана;
- 5) пентана.
- 22. В реакцию полимеризации вступает углеводород, модель молекулы которого указана на рисунке:


23. Мономером для получения высокомолекулярного соединения, формула которого представлена на рисунке, является:

- 1) 3-метил пентадиен-1,3;
- 2) бутадиен-1,3;
- 3) пентадиен-1,4;
- 4) бутен-2;
- 5) 2-метилпентен-2.

24. Выберите утверждение, верно характеризующее соединение, формула которого представлена на рисунке:

- 1 молекула является плоской;
- 2 число атомов водорода в молекуле равно 7;
- 3 соответствует общей формуле C_nH_{2n-6} ;
- 4 является гомологом соединения

5 — является изомером бензола.

25. Сумма молярных масс органических веществ X и Y схемы превращений

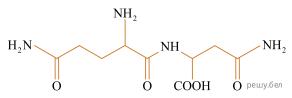
$$X \xleftarrow{\mathrm{CH_3OH}\ /\ \mathrm{H_2SO_4(конц.),\ t}} A \xrightarrow{Fe} Y$$

равна 290 г/моль. Укажите название карбоновой кислоты A:

- 1) муравьиная;
- 2) пропионовая;
- 3) уксусная;
- 4) бутановая;
- 5) пентановая.

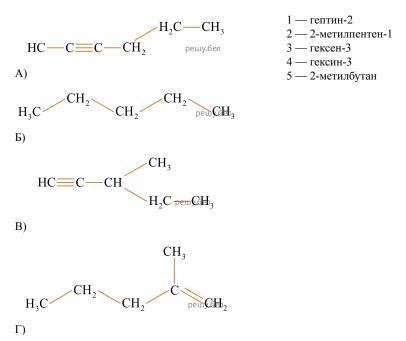
26. Сырьем для получения мыла является:

- 1) пропионовая кислота;
- целлюлоза;
- 3) глицин;
- 4) тристеарат глицерина;
- 5) этилпропионат.


27. Как вещество, формула которого представлена на рисунке, так и глицерин:

1) хорошо растворяется в воде; 2) подвергается гидролизу; 3) полностью окисляется кислородом до углерода и воды; 4) реагирует с гидроксидом меди(II) при нагревании с образованием красного осадка;

реагирует с гидроксидом меди(II) при нагревании с образованием красного осадка
является твердым веществом (20 °C).


28. Из соединения, формула которого

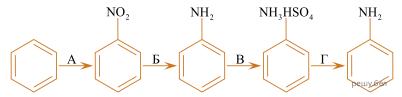
индивидуальные аминокислоты можно получить в результате реакции:

1) дегидратации; 2) щелочного гидролиза; 3) полимеризации; 4) этерификации; 5) ферментативного гидролиза.

29. Установите соответствие между формулой органического вещества и названием его структурного изомера.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A3Б1B2Г2. Помните, что некоторые данные правого столбца могут использоваться несколько раз.

30. Вещество А является сложным эфиром, образованным насыщенной монокарбоновой кислотой и насыщенным одноатомным спиртом. В результате кислотного гидролиза А образовались вещества Б и В. В молекуле Б три атома углерода, в молекуле В на один атом углерода меньше. При нагревании Б с серной кислотой при температуре выше 140 °C образуется газ Г. Вещество В реагирует с триметиламином с образованием соли Д. Установите соответствие между веществом, обозначенным буквой, и молярной массой (г/моль) вещества.


Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A2Б4B4Г1Д5. Помните, что некоторые данные правого столбца могут использоваться несколько раз.

31. Выберите утверждения, верно характеризующие крахмал.

1	является синтетическим полимером	
2	белое вещество, плохо растворимое в холодной воде	
3	в результате его гидролиза получается только одно вещество $ \begin{array}{c} CH_2OH \\ H \\ OH \\ H \end{array} $ $ \begin{array}{c} CH_2OH \\ OH \\ H \\ OH \end{array} $	
4	в результате его реакции с иодом появляется желтое окрашивание	
5	его макромолекулы имеют линейное и разветвленное строение	
6	одним из продуктов его гидролиза является мальтоза	

Ответ запишите цифрами (в порядке возрастания), например: 246.

32. Дана схема превращений, в которой каждая реакция обозначена буквой (А-Г):

Для осуществления превращений выберите четыре реагента из предложенных:

- 1) NaOH;
- 2) H₂SO₄;
- 3) LiSO₄;
- 4) H_2/Ni ;
- 5) KNO₃;
- 6) HNO₃/H₂SO₄;
- 7) CH₃OH;
- 8) Cu/HCl.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв, например: $A357B1\Gamma5$.

33. Выберите четыре утверждения, верно характеризующие аммиак.

1	используется для производства мочевины	
2	НЕ реагирует с концентрированной серной кислотой	
3	в водном растворе изменяет окраску индикаторов	
4	в промышленности его синтез осуществляют при нагревании и повышенном давлении	
5	в водном растворе можно обнаружить с помощью гидроксида калия	
6	вступает в реакцию соединения с соляной кислотой	

Ответ запишите цифрами (в порядке возрастания), например: 1246.

34. Установите соответствие между схемой обратимой реакции и направлением смещения равновесия при увеличении давления.

А)
$$N_2$$
 (г.) $+$ H_2 (г.) \iff NH_3 (г.) $+$ Q 1 — вправо (в сторону продуктов) 2 — влево (в сторону исходных веществ) 3 — НЕ смещается 3 — НЕ смещается

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б2B3Г3.

35. Установите соответствие между исходными веществами и суммой коэффициентов в полном ионном уравнении реакции. Все электролиты взяты в виде разбавленных водных растворов.

A) NH ₄ Cl и KOH	1 — 6
Б) NаОН и Н ₃ РО ₄ (изб.)	2 — 7
B) Ca(OH) ₂ и HCl	3 — 8
Г) AgNO ₃ и KI	4 — 12
1161103 n III	5 — 14

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б4B3Г2.

36. Установите соответствие между парой веществ и реагентом, позволяющим обнаружить каждое вещество пары. Все реакции протекают в разбавленном водном растворе.

A) $Fe(NO_3)_2$ и $(CH_3COO)_2Mg$	1 — KOH
Б) Sr(NO ₃) ₂ и Ba(NO ₃) ₂	2 — $NaHCO_3$
B) K ₂ SiO ₃ и K ₂ CO ₃	3 — HCOOH
Г) HNO ₃ и HCl	4 - Na2SO4
1) Throganiei	$5 - KNO_2$

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б2B3Г4.

37. Найдите сумму молярных масс (г/моль) алюминийсодержащих веществ Б и Д, образовавшихся в результате превращений:

1 моль
$$Al(NO_3)_3$$
 — \longrightarrow A — 1 моль $LiOH, t$ \longrightarrow B — HI (разб., изб.) \longrightarrow B — 3 моль KOH (р-р) \longrightarrow Γ — KOH (конц., изб.)

- **38.** Раствор объемом 1000 см³, содержащий муравьиную и уксусную кислоту, разделили на две части. Для нейтрализации одной части потребовалось 84 г раствора гидроксида калия с массовой долей щелочи 5%, а для нейтрализации другой части 70 г раствора гидроксида натрия с массовой долей щелочи 10%. Вычислите объем (см³) раствора, который нейтрализовали гидроксидом калия.
- **39.** При полном восстановлении смеси железа и оксида железа(II) водородом при нагревании было получено 22,2 г твердого остатка. Определите массу (г) исходной смеси, в которой массовая доля металлического железа составляла 20%.
- **40.** При полном сгорании в кислороде неизвестного органического вещества массой 43 г образовались углекислый газ объемом (н. у.) 56 дм³ и вода массой 45 г. Относительная плотность паров исходного вещества по воздуху составляет 2,966. Найдите число атомов в молекуле этого вещества.
- **41.** Загрязненный аммиак объемом 24 м³ (н. у.) содержит 5% примесей (по объему). В результате поглощения всего аммиака избытком азотной кислоты была получена аммиачная селитра. Учитывая, что для подкормки одного плодового дерева необходимо 57 г химического элемента азота, рассчитайте, какое количество деревьев можно подкормить, используя полученную селитру.
- **42.** Тепловой эффект реакции образования карбоната кальция из оксидов составляет 178 кДж/моль. Для полного разложения некоторого количества карбоната кальция потребовалось 64,08 кДж теплоты. Полученный оксид кальция спекали с углем массой 18 г в электропечи. Вычислите массу (г) образовавшегося при этом бинарного соединения, в котором массовая доля кальция равна 62,5%. (Примесями пренебречь.)
 - 43. Электролиз водного раствора, содержащего хлорид калия массой 186,25 г, протекает по схеме

$$\mathrm{KCl} + \mathrm{H}_2\mathrm{O} \xrightarrow{\mathtt{9.1ekTpoJn3}} \mathrm{KOH} + \mathrm{Cl}_2 \uparrow + \mathrm{H}_2 \uparrow.$$

Рассчитайте объем (н. у., дм³) выделившегося в результате реакции хлора, если его выход составляет 64%.

44. Порцию кристаллогидрата соли $Cu(NO_3)_2 \cdot 3H_2O$ прокалили. Образовался черный порошок, а остальные продукты реакции были полностью поглощены водой. Образовавшийся раствор сильной кислоты объемом 8 дм³ имеет pH1. Рассчитайте массу (r) черного порошка.